A Gauss-Kuzmin-Lévy theorem for a certain continued fraction

نویسنده

  • Hei-Chi Chan
چکیده

We consider an interval map which is a generalization of the well-known Gauss transformation. In particular, we prove a result concerning the asymptotic behavior of the distribution functions of this map. 1. Introduction. In 1800, Gauss studied the following problem. In modern notation, it reads as follows. Write x ∈ [0, 1) as a regular continued fraction

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Wirsing-type approach to some continued fraction expansion

The Gauss 1812 problem gave rise to an extended literature. In modern times, the socalled Gauss-Kuzmin-Lévy theorem is still one of the most important results in the metrical theory of regular continued fractions (RCFs). A recent survey of this topic is to be found in [10]. From the time of Gauss, a great number of such theorems followed. See, for example, [2, 6, 7, 8, 18]. Apart from the RCF e...

متن کامل

A Gauss-Kuzmin Theorem for Continued Fractions Associated with Nonpositive Integer Powers of an Integer m ≥ 2

We consider a family {τ m : m ≥ 2} of interval maps which are generalizations of the Gauss transformation. For the continued fraction expansion arising from τ m , we solve a Gauss-Kuzmin-type problem.

متن کامل

Duke’s Theorem and Continued Fractions

For uniformly chosen random α ∈ [0, 1], it is known the probability the nth digit of the continued-fraction expansion, [α]n converges to the Gauss-Kuzmin distribution P([α]n = k) ≈ log2(1 + 1/k(k + 2)) as n → ∞. In this paper, we show the continued fraction digits of √ d, which are eventually periodic, also converge to the Gauss-Kuzmin distribution as d → ∞ with bounded class number, h(d). The ...

متن کامل

A ug 2 00 1 CONTINUED FRACTIONS , MODULAR SYMBOLS , AND NON – COMMUTATIVE GEOMETRY

Abstract. Using techniques introduced by D. Mayer, we prove an extension of the classical Gauss–Kuzmin theorem about the distribution of continued fractions, which in particular allows one to take into account some congruence properties of successive convergents. This result has an application to the Mixmaster Universe model in general relativity. We then study some averages involving modular s...

متن کامل

About statistics of periods of continued fractions of quadratic irrationalities

In this paper we answer certain questions posed by V.I. Arnold, namely, we study periods of continued fractions for solutions of quadratic equations in the form x + px = q with integer p and q, p + q ≤ R. Our results concern the average sum of period elements and Gauss–Kuzmin statistics as R → ∞.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Int. J. Math. Mathematical Sciences

دوره 2004  شماره 

صفحات  -

تاریخ انتشار 2004